/*** * * Copyright (c) 1996-2001, Valve LLC. All rights reserved. * * This product contains software technology licensed from Id * Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc. * All Rights Reserved. * * This source code contains proprietary and confidential information of * Valve LLC and its suppliers. Access to this code is restricted to * persons who have executed a written SDK license with Valve. Any access, * use or distribution of this code by or to any unlicensed person is illegal. * ****/ //========================================================= // nodes.h //========================================================= #pragma once class FSFile; //========================================================= // DEFINE //========================================================= #define MAX_STACK_NODES 100 #define NO_NODE -1 #define MAX_NODE_HULLS 4 #define bits_NODE_LAND (1 << 0) // Land node, so nudge if necessary. #define bits_NODE_AIR (1 << 1) // Air node, don't nudge. #define bits_NODE_WATER (1 << 2) // Water node, don't nudge. #define bits_NODE_GROUP_REALM (bits_NODE_LAND | bits_NODE_AIR | bits_NODE_WATER) //========================================================= // Instance of a node. //========================================================= class CNode { public: Vector m_vecOrigin; // location of this node in space Vector m_vecOriginPeek; // location of this node (LAND nodes are NODE_HEIGHT higher). byte m_Region[3]; // Which of 256 regions do each of the coordinate belong? int m_afNodeInfo; // bits that tell us more about this location int m_cNumLinks; // how many links this node has int m_iFirstLink; // index of this node's first link in the link pool. // Where to start looking in the compressed routing table (offset into m_pRouteInfo). // (4 hull sizes -- smallest to largest + fly/swim), and secondly, door capability. // int m_pNextBestNode[MAX_NODE_HULLS][2]; // Used in finding the shortest path. m_fClosestSoFar is -1 if not visited. // Then it is the distance to the source. If another path uses this node // and has a closer distance, then m_iPreviousNode is also updated. // float m_flClosestSoFar; // Used in finding the shortest path. int m_iPreviousNode; short m_sHintType; // there is something interesting in the world at this node's position short m_sHintActivity; // there is something interesting in the world at this node's position float m_flHintYaw; // monster on this node should face this yaw to face the hint. }; //========================================================= // CLink - A link between 2 nodes //========================================================= #define bits_LINK_SMALL_HULL (1 << 0) // headcrab box can fit through this connection #define bits_LINK_HUMAN_HULL (1 << 1) // player box can fit through this connection #define bits_LINK_LARGE_HULL (1 << 2) // big box can fit through this connection #define bits_LINK_FLY_HULL (1 << 3) // a flying big box can fit through this connection #define bits_LINK_DISABLED (1 << 4) // link is not valid when the set #define NODE_SMALL_HULL 0 #define NODE_HUMAN_HULL 1 #define NODE_LARGE_HULL 2 #define NODE_FLY_HULL 3 class CLink { public: int m_iSrcNode; // the node that 'owns' this link ( keeps us from having to make reverse lookups ) int m_iDestNode; // the node on the other end of the link. entvars_t* m_pLinkEnt; // the entity that blocks this connection (doors, etc) // m_szLinkEntModelname is not necessarily NULL terminated (so we can store it in a more alignment-friendly 4 bytes) char m_szLinkEntModelname[4]; // the unique name of the brush model that blocks the connection (this is kept for save/restore) int m_afLinkInfo; // information about this link float m_flWeight; // length of the link line segment }; typedef struct { int m_SortedBy[3]; int m_CheckedEvent; } DIST_INFO; typedef struct { Vector v; short n; // Nearest node or -1 if no node found. } CACHE_ENTRY; //========================================================= // CGraph //========================================================= #define GRAPH_VERSION (int)16 // !!!increment this whever graph/node/link classes change, to obsolesce older disk files. class CGraph { public: // the graph has two flags, and should not be accessed unless both flags are true! qboolean m_fGraphPresent; // is the graph in memory? qboolean m_fGraphPointersSet; // are the entity pointers for the graph all set? qboolean m_fRoutingComplete; // are the optimal routes computed, yet? CNode* m_pNodes; // pointer to the memory block that contains all node info CLink* m_pLinkPool; // big list of all node connections char* m_pRouteInfo; // compressed routing information the nodes use. int m_cNodes; // total number of nodes int m_cLinks; // total number of links int m_nRouteInfo; // size of m_pRouteInfo in bytes. // Tables for making nearest node lookup faster. SortedBy provided nodes in a // order of a particular coordinate. Instead of doing a binary search, RangeStart // and RangeEnd let you get to the part of SortedBy that you are interested in. // // Once you have a point of interest, the only way you'll find a closer point is // if at least one of the coordinates is closer than the ones you have now. So we // search each range. After the search is exhausted, we know we have the closest // node. // #define CACHE_SIZE 128 #define NUM_RANGES 256 DIST_INFO* m_di; // This is m_cNodes long, but the entries don't correspond to CNode entries. int m_RangeStart[3][NUM_RANGES]; int m_RangeEnd[3][NUM_RANGES]; float m_flShortest; int m_iNearest; int m_minX, m_minY, m_minZ, m_maxX, m_maxY, m_maxZ; int m_minBoxX, m_minBoxY, m_minBoxZ, m_maxBoxX, m_maxBoxY, m_maxBoxZ; int m_CheckedCounter; float m_RegionMin[3], m_RegionMax[3]; // The range of nodes. CACHE_ENTRY m_Cache[CACHE_SIZE]; int m_HashPrimes[16]; short* m_pHashLinks; int m_nHashLinks; // kinda sleazy. In order to allow variety in active idles for monster groups in a room with more than one node, // we keep track of the last node we searched from and store it here. Subsequent searches by other monsters will pick // up where the last search stopped. int m_iLastActiveIdleSearch; // another such system used to track the search for cover nodes, helps greatly with two monsters trying to get to the same node. int m_iLastCoverSearch; // functions to create the graph int LinkVisibleNodes(CLink* pLinkPool, FSFile& file, int* piBadNode); int RejectInlineLinks(CLink* pLinkPool, FSFile& file); int FindShortestPath(int* piPath, int iStart, int iDest, int iHull, int afCapMask); int FindNearestNode(const Vector& vecOrigin, CBaseEntity* pEntity); int FindNearestNode(const Vector& vecOrigin, int afNodeTypes); //int FindNearestLink ( const Vector &vecTestPoint, int *piNearestLink, bool *pfAlongLine ); float PathLength(int iStart, int iDest, int iHull, int afCapMask); int NextNodeInRoute(int iCurrentNode, int iDest, int iHull, int iCap); enum NODEQUERY { NODEGRAPH_DYNAMIC, NODEGRAPH_STATIC }; // A static query means we're asking about the possiblity of handling this entity at ANY time // A dynamic query means we're asking about it RIGHT NOW. So we should query the current state bool HandleLinkEnt(int iNode, entvars_t* pevLinkEnt, int afCapMask, NODEQUERY queryType); entvars_t* LinkEntForLink(CLink* pLink, CNode* pNode); void ShowNodeConnections(int iNode); void InitGraph(); bool AllocNodes(); bool CheckNODFile(const char* szMapName); bool FLoadGraph(const char* szMapName); bool FSaveGraph(const char* szMapName); bool FSetGraphPointers(); void CheckNode(Vector vecOrigin, int iNode); void BuildRegionTables(); void ComputeStaticRoutingTables(); void TestRoutingTables(); void HashInsert(int iSrcNode, int iDestNode, int iKey); void HashSearch(int iSrcNode, int iDestNode, int& iKey); void HashChoosePrimes(int TableSize); void BuildLinkLookups(); void SortNodes(); int HullIndex(const CBaseEntity* pEntity); // what hull the monster uses int NodeType(const CBaseEntity* pEntity); // what node type the monster uses inline int CapIndex(int afCapMask) { if (afCapMask & (bits_CAP_OPEN_DOORS | bits_CAP_AUTO_DOORS | bits_CAP_USE)) return 1; return 0; } inline CNode& Node(int i) { #ifdef _DEBUG if (!m_pNodes || i < 0 || i > m_cNodes) ALERT(at_error, "Bad Node!\n"); #endif return m_pNodes[i]; } inline CLink& Link(int i) { #ifdef _DEBUG if (!m_pLinkPool || i < 0 || i > m_cLinks) ALERT(at_error, "Bad link!\n"); #endif return m_pLinkPool[i]; } inline CLink& NodeLink(int iNode, int iLink) { return Link(Node(iNode).m_iFirstLink + iLink); } inline CLink& NodeLink(const CNode& node, int iLink) { return Link(node.m_iFirstLink + iLink); } inline int INodeLink(int iNode, int iLink) { return NodeLink(iNode, iLink).m_iDestNode; } #if 0 inline CNode &SourceNode( int iNode, int iLink ) { return Node( NodeLink( iNode, iLink ).m_iSrcNode ); } inline CNode &DestNode( int iNode, int iLink ) { return Node( NodeLink( iNode, iLink ).m_iDestNode ); } inline CNode *PNodeLink ( int iNode, int iLink ) { return &DestNode( iNode, iLink ); } #endif }; //========================================================= // Nodes start out as ents in the level. The node graph // is built, then these ents are discarded. //========================================================= class CNodeEnt : public CBaseEntity { void Spawn() override; bool KeyValue(KeyValueData* pkvd) override; int ObjectCaps() override { return CBaseEntity::ObjectCaps() & ~FCAP_ACROSS_TRANSITION; } short m_sHintType; short m_sHintActivity; }; //========================================================= // CStack - last in, first out. //========================================================= class CStack { public: CStack(); void Push(int value); int Pop(); int Top(); int Empty() { return m_level == 0; } int Size() { return m_level; } void CopyToArray(int* piArray); private: int m_stack[MAX_STACK_NODES]; int m_level; }; //========================================================= // CQueue - first in, first out. //========================================================= class CQueue { public: CQueue(); // constructor inline bool Full() { return (m_cSize == MAX_STACK_NODES); } inline bool Empty() { return (m_cSize == 0); } //inline int Tail () { return ( m_queue[ m_tail ] ); } inline int Size() { return (m_cSize); } void Insert(int, float); int Remove(float&); private: int m_cSize; struct tag_QUEUE_NODE { int Id; float Priority; } m_queue[MAX_STACK_NODES]; int m_head; int m_tail; }; //========================================================= // CQueuePriority - Priority queue (smallest item out first). // //========================================================= class CQueuePriority { public: CQueuePriority(); // constructor inline bool Full() { return (m_cSize == MAX_STACK_NODES); } inline bool Empty() { return (m_cSize == 0); } //inline int Tail ( float & ) { return ( m_queue[ m_tail ].Id ); } inline int Size() { return (m_cSize); } void Insert(int, float); int Remove(float&); private: int m_cSize; struct tag_HEAP_NODE { int Id; float Priority; } m_heap[MAX_STACK_NODES]; void Heap_SiftDown(int); void Heap_SiftUp(); }; //========================================================= // hints - these MUST coincide with the HINTS listed under // info_node in the FGD file! //========================================================= enum { HINT_NONE = 0, HINT_WORLD_DOOR, HINT_WORLD_WINDOW, HINT_WORLD_BUTTON, HINT_WORLD_MACHINERY, HINT_WORLD_LEDGE, HINT_WORLD_LIGHT_SOURCE, HINT_WORLD_HEAT_SOURCE, HINT_WORLD_BLINKING_LIGHT, HINT_WORLD_BRIGHT_COLORS, HINT_WORLD_HUMAN_BLOOD, HINT_WORLD_ALIEN_BLOOD, HINT_TACTICAL_EXIT = 100, HINT_TACTICAL_VANTAGE, HINT_TACTICAL_AMBUSH, HINT_STUKA_PERCH = 300, HINT_STUKA_LANDING, }; extern CGraph WorldGraph;