gltf loading; world space lighting for now

This commit is contained in:
Lauri Räsänen 2023-01-23 00:24:05 +02:00
parent db95acf998
commit 1a7a6707d9
10 changed files with 546 additions and 56 deletions

View file

@ -89,10 +89,10 @@ impl Camera {
self.position +=
right * (controller.move_right - controller.move_left) * controller.speed * dt;
self.position += up * (controller.move_up - controller.move_down) * controller.speed * dt;
println!(
"camera pos ({}, {}, {})",
self.position.x, self.position.y, self.position.z
);
// println!(
// "camera pos ({}, {}, {})",
// self.position.x, self.position.y, self.position.z
// );
}
}

View file

@ -7,17 +7,15 @@ use super::model::{Mesh, Model};
pub struct LightUniform {
pub position: [f32; 3],
_padding: u32,
pub color: [f32; 3],
_padding2: u32,
pub color: [f32; 4],
}
impl LightUniform {
pub fn new(position: [f32; 3], color: [f32; 3]) -> Self {
pub fn new(position: [f32; 3], color: [f32; 4]) -> Self {
return LightUniform {
position: position,
_padding: 0,
color: color,
_padding2: 0,
};
}
}

View file

@ -44,9 +44,9 @@ impl Material {
return Self {
name: String::from(name),
diffuse_texture: diffuse_texture,
normal_texture: normal_texture,
bind_group: bind_group,
diffuse_texture,
normal_texture,
bind_group,
};
}
}
@ -69,12 +69,12 @@ pub trait Vertex {
}
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
#[derive(Copy, Clone, Debug, Default, bytemuck::Pod, bytemuck::Zeroable)]
pub struct ModelVertex {
pub position: [f32; 3],
pub tex_coords: [f32; 2],
pub normal: [f32; 3],
pub tangent: [f32; 3],
pub tangent: [f32; 4],
pub bitangent: [f32; 3],
}

View file

@ -1,22 +1,27 @@
use std::io::{BufReader, Cursor};
use std::path::PathBuf;
use wgpu::util::DeviceExt;
use crate::core::model::{Material, Mesh, Model, ModelVertex};
use crate::core::texture::Texture;
pub async fn load_string(file_name: &str) -> anyhow::Result<String> {
let path = std::path::Path::new(env!("OUT_DIR"))
pub fn get_resource_path(file_name: &str) -> PathBuf {
return std::path::Path::new(env!("OUT_DIR"))
.join("res")
.join(file_name);
}
pub async fn load_string(file_name: &str) -> anyhow::Result<String> {
let path = get_resource_path(file_name);
println!("load_string: Loading from {:?}", path.to_str());
let txt = std::fs::read_to_string(path)?;
return Ok(txt);
}
pub async fn load_binary(file_name: &str) -> anyhow::Result<Vec<u8>> {
let path = std::path::Path::new(env!("OUT_DIR"))
.join("res")
.join(file_name);
let path = get_resource_path(file_name);
println!("load_binary: Loading from {:?}", path.to_str());
let data = std::fs::read(path)?;
return Ok(data);
@ -33,7 +38,7 @@ pub async fn load_texture(
return Texture::from_bytes(device, queue, &data, file_name, is_normal_map);
}
pub async fn load_model(
pub async fn load_model_obj(
file_name: &str,
device: &wgpu::Device,
queue: &wgpu::Queue,
@ -102,7 +107,7 @@ pub async fn load_model(
m.mesh.normals[i * 3 + 1],
m.mesh.normals[i * 3 + 2],
],
tangent: [0.0; 3],
tangent: [0.0; 4],
bitangent: [0.0; 3],
})
.collect::<Vec<_>>();
@ -137,7 +142,9 @@ pub async fn load_model(
for i in 0..3 {
let sz = chunk[i] as usize;
vertices[sz].tangent =
(tangent + cgmath::Vector3::from(vertices[sz].tangent)).into();
(cgmath::Vector4::new(tangent.x, tangent.y, tangent.z, 0.0)
+ cgmath::Vector4::from(vertices[sz].tangent))
.into();
vertices[sz].bitangent =
(bitangent + cgmath::Vector3::from(vertices[sz].bitangent)).into();
triangles_included[sz] += 1;
@ -148,7 +155,7 @@ pub async fn load_model(
for (i, n) in triangles_included.into_iter().enumerate() {
let denom = 1.0 / n as f32;
let mut v = &mut vertices[i];
v.tangent = (cgmath::Vector3::from(v.tangent) * denom).into();
v.tangent = (cgmath::Vector4::from(v.tangent) * denom).into();
v.bitangent = (cgmath::Vector3::from(v.bitangent) * denom).into();
}
@ -175,3 +182,283 @@ pub async fn load_model(
return Ok(Model { meshes, materials });
}
pub async fn load_model_gltf(
file_name: &str,
device: &wgpu::Device,
queue: &wgpu::Queue,
layout: &wgpu::BindGroupLayout,
) -> anyhow::Result<Model> {
let mut materials = Vec::new();
let mut meshes = Vec::new();
println!("gltf: Loading file {}", file_name);
let (document, buffers, mut images) = gltf::import(get_resource_path(file_name))?;
println!("gltf: Loading meshes");
for mesh in document.meshes() {
let primitives = mesh.primitives();
primitives.for_each(|primitive| {
let reader = primitive.reader(|buffer| Some(&buffers[buffer.index()]));
let mut vertices = Vec::new();
let mut indices = Vec::new();
if let Some(vertex_attribute) = reader.read_positions() {
vertex_attribute.for_each(|vertex| {
// dbg!(vertex);
vertices.push(ModelVertex {
position: vertex,
..Default::default()
})
});
} else {
panic!();
}
if let Some(normal_attribute) = reader.read_normals() {
let mut normal_index = 0;
normal_attribute.for_each(|normal| {
// dbg!(normal);
vertices[normal_index].normal = normal;
normal_index += 1;
});
} else {
panic!();
}
// if let Some(tangent_attribute) = reader.read_tangents() {
// let mut tangent_index = 0;
// tangent_attribute.for_each(|tangent| {
// // dbg!(tangent);
// vertices[tangent_index].tangent = tangent;
// tangent_index += 1;
// });
// }
// tangents and bitangents from triangles
let mut triangles_included = vec![0; vertices.len()];
for chunk in indices.chunks(3) {
let v0 = vertices[chunk[0] as usize];
let v1 = vertices[chunk[1] as usize];
let v2 = vertices[chunk[2] as usize];
let pos0: cgmath::Vector3<f32> = v0.position.into();
let pos1: cgmath::Vector3<f32> = v1.position.into();
let pos2: cgmath::Vector3<f32> = v2.position.into();
let uv0: cgmath::Vector2<f32> = v0.tex_coords.into();
let uv1: cgmath::Vector2<f32> = v1.tex_coords.into();
let uv2: cgmath::Vector2<f32> = v2.tex_coords.into();
let delta_pos1 = pos1 - pos0;
let delta_pos2 = pos2 - pos0;
let delta_uv1 = uv1 - uv0;
let delta_uv2 = uv2 - uv0;
let r = 1.0 / (delta_uv1.x * delta_uv2.y - delta_uv1.y * delta_uv2.x);
let tangent = (delta_pos1 * delta_uv2.y - delta_pos2 * delta_uv1.y) * r;
let bitangent = (delta_pos2 * delta_uv1.x - delta_pos1 * delta_uv2.x) * -r;
for i in 0..3 {
let sz = chunk[i] as usize;
vertices[sz].tangent =
(cgmath::Vector4::new(tangent.x, tangent.y, tangent.z, 0.0)
+ cgmath::Vector4::from(vertices[sz].tangent))
.into();
vertices[sz].bitangent =
(bitangent + cgmath::Vector3::from(vertices[sz].bitangent)).into();
triangles_included[sz] += 1;
}
}
// Average the tangents/bitangents
for (i, n) in triangles_included.into_iter().enumerate() {
let denom = 1.0 / n as f32;
let mut v = &mut vertices[i];
v.tangent = (cgmath::Vector4::from(v.tangent) * denom).into();
v.bitangent = (cgmath::Vector3::from(v.bitangent) * denom).into();
}
if let Some(tex_coord_attribute) = reader.read_tex_coords(0).map(|v| v.into_f32()) {
let mut tex_coord_index = 0;
tex_coord_attribute.for_each(|tex_coord| {
// dbg!(tex_coord);
vertices[tex_coord_index].tex_coords = tex_coord;
tex_coord_index += 1;
});
} else {
panic!();
}
if let Some(indices_raw) = reader.read_indices() {
// dbg!(indices_raw);
indices.append(&mut indices_raw.into_u32().collect::<Vec<u32>>());
} else {
panic!();
}
// dbg!(indices);
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Vertex Buffer", file_name)),
contents: bytemuck::cast_slice(&vertices),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Index Buffer", file_name)),
contents: bytemuck::cast_slice(&indices),
usage: wgpu::BufferUsages::INDEX,
});
meshes.push(Mesh {
name: file_name.to_string(),
vertex_buffer,
index_buffer,
num_elements: indices.len() as u32,
material: primitive.material().index().unwrap_or(0),
});
});
}
println!("gltf: Loading materials");
for material in document.materials() {
let pbr = material.pbr_metallic_roughness();
// diffuse
let diffuse_index = pbr
.base_color_texture()
.map(|tex| {
println!("Grabbing diffuse tex");
tex.texture().source().index()
})
.unwrap_or(0); // TODO default tex
let diffuse_data = &mut images[diffuse_index];
if diffuse_data.format == gltf::image::Format::R8G8B8
|| diffuse_data.format == gltf::image::Format::R16G16B16
{
diffuse_data.pixels =
gltf_pixels_to_wgpu(diffuse_data.pixels.clone(), diffuse_data.format);
}
let diffuse_texture = Texture::from_pixels(
device,
queue,
&diffuse_data.pixels,
(diffuse_data.width, diffuse_data.height),
gltf_image_format_stride(diffuse_data.format),
gltf_image_format_to_wgpu(diffuse_data.format, false),
Some(file_name),
)
.unwrap();
// normal
let normal_index = material
.normal_texture()
.map(|tex| {
println!("Grabbing normal tex");
tex.texture().source().index()
})
.unwrap_or(0); // TODO default tex
let normal_data = &mut images[normal_index];
if normal_data.format == gltf::image::Format::R8G8B8
|| normal_data.format == gltf::image::Format::R16G16B16
{
normal_data.pixels =
gltf_pixels_to_wgpu(normal_data.pixels.clone(), normal_data.format);
}
let normal_texture = Texture::from_pixels(
device,
queue,
&normal_data.pixels,
(normal_data.width, normal_data.height),
gltf_image_format_stride(normal_data.format),
gltf_image_format_to_wgpu(normal_data.format, true),
Some(file_name),
)
.unwrap();
materials.push(Material::new(
device,
&material.name().unwrap_or("Default Material").to_string(),
diffuse_texture,
normal_texture,
layout,
));
}
println!("gltf: load done!");
Ok(Model { meshes, materials })
}
fn gltf_image_format_to_wgpu(format: gltf::image::Format, srgb: bool) -> wgpu::TextureFormat {
if srgb {
return match format {
gltf::image::Format::R8 => panic!(),
gltf::image::Format::R8G8 => panic!(),
gltf::image::Format::R8G8B8 => wgpu::TextureFormat::Rgba8UnormSrgb, // converted
gltf::image::Format::R8G8B8A8 => wgpu::TextureFormat::Rgba8UnormSrgb,
gltf::image::Format::B8G8R8 => wgpu::TextureFormat::Bgra8UnormSrgb,
gltf::image::Format::B8G8R8A8 => wgpu::TextureFormat::Bgra8UnormSrgb,
gltf::image::Format::R16 => panic!(),
gltf::image::Format::R16G16 => panic!(),
gltf::image::Format::R16G16B16 => panic!(), // converted
gltf::image::Format::R16G16B16A16 => panic!(),
};
}
match format {
gltf::image::Format::R8 => wgpu::TextureFormat::R8Unorm,
gltf::image::Format::R8G8 => wgpu::TextureFormat::Rg8Unorm,
gltf::image::Format::R8G8B8 => wgpu::TextureFormat::Rgba8Unorm, // converted
gltf::image::Format::R8G8B8A8 => wgpu::TextureFormat::Rgba8Unorm,
gltf::image::Format::B8G8R8 => wgpu::TextureFormat::Bgra8Unorm,
gltf::image::Format::B8G8R8A8 => wgpu::TextureFormat::Bgra8Unorm,
gltf::image::Format::R16 => wgpu::TextureFormat::R16Unorm,
gltf::image::Format::R16G16 => wgpu::TextureFormat::Rg16Unorm,
gltf::image::Format::R16G16B16 => wgpu::TextureFormat::Rgba16Unorm, // converted
gltf::image::Format::R16G16B16A16 => wgpu::TextureFormat::Rgba16Unorm,
}
}
fn gltf_image_format_stride(format: gltf::image::Format) -> u32 {
match format {
gltf::image::Format::R8 => 1,
gltf::image::Format::R8G8 => 2,
gltf::image::Format::R8G8B8 => 4, // converted
gltf::image::Format::R8G8B8A8 => 4,
gltf::image::Format::B8G8R8 => 3,
gltf::image::Format::B8G8R8A8 => 4,
gltf::image::Format::R16 => 2,
gltf::image::Format::R16G16 => 4,
gltf::image::Format::R16G16B16 => 8, // converted
gltf::image::Format::R16G16B16A16 => 8,
}
}
// Add alpha if needed
fn gltf_pixels_to_wgpu(mut bytes: Vec<u8>, format: gltf::image::Format) -> Vec<u8> {
if format == gltf::image::Format::R8G8B8 {
let pixels = bytes.len() / 3;
bytes.reserve_exact(pixels);
bytes = bytes
.chunks_exact(3)
.flat_map(|s| [s[0], s[1], s[2], 255])
.collect();
} else if format == gltf::image::Format::R16G16B16 {
let pixels = bytes.len() / 6;
bytes.reserve_exact(pixels);
bytes = bytes
.chunks_exact(6)
.flat_map(|s| [s[0], s[1], s[2], s[3], s[4], s[5], 255, 255])
.collect();
}
return bytes;
}

View file

@ -29,7 +29,7 @@ pub struct State {
instances: Vec<Instance>,
instance_buffer: wgpu::Buffer,
depth_texture: Texture,
obj_model: Model,
model: Model,
light_uniform: LightUniform,
light_buffer: wgpu::Buffer,
light_render_pipeline: wgpu::RenderPipeline,
@ -76,7 +76,7 @@ impl State {
// Camera
let camera = Camera::new(
(0.0, 4.0, -4.0).into(),
(0.0, 0.0, 0.0).into(),
0.0,
0.0,
60.0,
@ -116,7 +116,7 @@ impl State {
let camera_controller = CameraController::new(1.0, 2.0);
let light_uniform = LightUniform::new([900.0, 60.0, 200.0], [1.0, 1.0, 1.0]);
let light_uniform = LightUniform::new([100.0, 60.0, 0.0], [1.0, 1.0, 1.0, 10000.0]);
// We'll want to update our lights position, so we use COPY_DST
let light_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
@ -193,7 +193,7 @@ impl State {
});
let obj_model =
resources::load_model("sponza.obj", &device, &queue, &texture_bind_group_layout)
resources::load_model_gltf("sponza/Sponza.gltf", &device, &queue, &texture_bind_group_layout)
.await
.unwrap();
@ -300,7 +300,7 @@ impl State {
instances,
instance_buffer,
depth_texture,
obj_model,
model: obj_model,
light_uniform,
light_buffer,
light_render_pipeline,
@ -346,7 +346,7 @@ impl State {
// Update the light
let old_position: cgmath::Vector3<_> = self.light_uniform.position.into();
self.light_uniform.position =
(cgmath::Quaternion::from_angle_y(cgmath::Deg(1.0)) * old_position).into();
(cgmath::Quaternion::from_angle_y(cgmath::Deg(90.0 * dt.as_secs_f32())) * old_position).into();
self.queue.write_buffer(
&self.light_buffer,
0,
@ -397,14 +397,14 @@ impl State {
render_pass.set_pipeline(&self.light_render_pipeline);
render_pass.draw_light_model(
&self.obj_model,
&self.model,
&self.camera_bind_group,
&self.light_bind_group,
);
render_pass.set_pipeline(&self.render_pipeline);
render_pass.draw_model_instanced(
&self.obj_model,
&self.model,
0..self.instances.len() as u32,
&self.camera_bind_group,
&self.light_bind_group,

View file

@ -72,7 +72,30 @@ impl Texture {
) -> Result<Self> {
let rgba = img.to_rgba8();
let dimensions = img.dimensions();
return Self::from_pixels(
device,
queue,
&rgba.to_vec(),
dimensions,
4,
if is_normal_map {
wgpu::TextureFormat::Rgba8UnormSrgb
} else {
wgpu::TextureFormat::Rgba8Unorm
},
label,
);
}
pub fn from_pixels(
device: &wgpu::Device,
queue: &wgpu::Queue,
pixels: &[u8],
dimensions: (u32, u32),
stride: u32,
format: wgpu::TextureFormat,
label: Option<&str>,
) -> Result<Self> {
let size = wgpu::Extent3d {
width: dimensions.0,
height: dimensions.1,
@ -84,14 +107,12 @@ impl Texture {
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: if is_normal_map {
wgpu::TextureFormat::Rgba8Unorm
} else {
wgpu::TextureFormat::Rgba8UnormSrgb
},
format: format,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
});
dbg!(stride);
dbg!(dimensions);
queue.write_texture(
wgpu::ImageCopyTexture {
aspect: wgpu::TextureAspect::All,
@ -99,10 +120,10 @@ impl Texture {
mip_level: 0,
origin: wgpu::Origin3d::ZERO,
},
&rgba,
&pixels,
wgpu::ImageDataLayout {
offset: 0,
bytes_per_row: std::num::NonZeroU32::new(4 * dimensions.0),
bytes_per_row: std::num::NonZeroU32::new(stride * dimensions.0),
rows_per_image: std::num::NonZeroU32::new(dimensions.1),
},
size,

View file

@ -10,9 +10,6 @@ use winit::{
pub async fn run() {
let event_loop = EventLoop::new();
let window = WindowBuilder::new().build(&event_loop).unwrap();
window.set_cursor_grab(true).unwrap();
window.set_cursor_visible(false);
window.set_decorations(false);
let mut state = State::new(&window).await;
let mut last_render = Instant::now();
@ -44,6 +41,11 @@ pub async fn run() {
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
state.resize(**new_inner_size);
}
WindowEvent::Focused(focused) => {
// window.set_cursor_grab(*focused).unwrap();
window.set_cursor_visible(!*focused);
window.set_decorations(!*focused);
}
_ => {}
}
}

View file

@ -10,7 +10,7 @@ var<uniform> camera: CameraUniform;
struct Light {
position: vec3<f32>,
color: vec3<f32>,
color: vec4<f32>,
}
@group(2) @binding(0)
var<uniform> light: Light;
@ -36,6 +36,8 @@ struct VertexOutput {
@location(1) tangent_position: vec3<f32>,
@location(2) tangent_light_position: vec3<f32>,
@location(3) tangent_view_position: vec3<f32>,
@location(4) world_position: vec3<f32>,
@location(5) world_normal: vec3<f32>,
}
@vertex
@ -67,6 +69,10 @@ fn vs_main(
out.tangent_position = tangent_matrix * world_position.xyz;
out.tangent_light_position = tangent_matrix * light.position;
out.tangent_view_position = tangent_matrix * camera.position.xyz;
out.world_normal = world_normal.xyz;
out.world_position = world_position.xyz;
return out;
}
@ -82,6 +88,7 @@ var t_normal: texture_2d<f32>;
@group(0) @binding(3)
var s_normal: sampler;
// TODO: fix using tangent space and normal texture instead of world
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
let object_color: vec4<f32> = textureSample(t_diffuse, s_diffuse, in.tex_coords);
@ -89,21 +96,30 @@ fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
// lighting vecs
let tangent_normal = object_normal.xyz * 2.0 - 1.0;
let light_dir = normalize(in.tangent_light_position - in.tangent_position);
let view_dir = normalize(in.tangent_view_position - in.tangent_position);
// let light_dir = normalize(in.tangent_light_position - in.tangent_position);
var light_dir = light.position - in.world_position;
let light_dist = length(light_dir);
light_dir = normalize(light_dir);
let coef_a = 0.0;
let coef_b = 1.25;
let light_attenuation = 1.0 / (1.0 + coef_a * light_dist + coef_b * light_dist * light_dist);
// let view_dir = normalize(in.tangent_view_position - in.tangent_position);
let view_dir = normalize(camera.position.xyz - in.world_position);
let half_dir = normalize(view_dir + light_dir);
// ambient
let ambient_strength = 0.025;
let ambient_color = light.color * ambient_strength;
let ambient_color = vec3(1.0) * ambient_strength;
// diffuse
let diffuse_strength = max(dot(tangent_normal, light_dir), 0.0);
let diffuse_color = light.color * diffuse_strength;
// let diffuse_strength = max(dot(tangent_normal, light_dir), 0.0);
let diffuse_strength = max(dot(in.world_normal, light_dir), 0.0);
let diffuse_color = diffuse_strength * light.color.xyz * light.color.w * light_attenuation;
// specular
let specular_strength = pow(max(dot(tangent_normal, half_dir), 0.0), 32.0);
let specular_color = specular_strength * light.color;
// let specular_strength = pow(max(dot(tangent_normal, half_dir), 0.0), 32.0);
let specular_strength = pow(max(dot(in.world_normal, half_dir), 0.0), 32.0);
let specular_color = specular_strength * light.color.xyz * light.color.w * light_attenuation;
let result = (ambient_color + diffuse_color + specular_color) * object_color.xyz;