let PI = 3.14159; // Vertex shader struct CameraUniform { view: mat4x4, proj: mat4x4, position: vec4, } @group(1) @binding(0) var camera: CameraUniform; struct Light { position: vec3, color: vec4, } @group(2) @binding(0) var light: Light; struct VertexInput { @location(0) position: vec3, @location(1) tex_coords: vec2, @location(2) normal: vec3, @location(3) tangent: vec3, @location(4) bitangent: vec3, } struct InstanceInput { @location(5) model_matrix_0: vec4, @location(6) model_matrix_1: vec4, @location(7) model_matrix_2: vec4, @location(8) model_matrix_3: vec4, @location(9) normal_matrix_0: vec3, @location(10) normal_matrix_1: vec3, @location(11) normal_matrix_2: vec3, } struct VertexOutput { @builtin(position) clip_position: vec4, @location(0) tex_coords: vec2, @location(1) tangent_position: vec3, @location(2) tangent_light_position: vec3, @location(3) tangent_view_position: vec3, @location(4) world_position: vec3, } @vertex fn vs_main( model: VertexInput, instance: InstanceInput, ) -> VertexOutput { let model_matrix = mat4x4( instance.model_matrix_0, instance.model_matrix_1, instance.model_matrix_2, instance.model_matrix_3, ); let normal_matrix = mat3x3( instance.normal_matrix_0, instance.normal_matrix_1, instance.normal_matrix_2, ); let world_normal = normalize(normal_matrix * model.normal); let world_tangent = normalize(normal_matrix * model.tangent); let world_bitangent = normalize(normal_matrix * model.bitangent); let tangent_matrix = transpose(mat3x3( world_tangent, world_bitangent, world_normal, )); let world_position = model_matrix * vec4(model.position, 1.0); var out: VertexOutput; out.clip_position = camera.proj * camera.view * world_position; out.tex_coords = model.tex_coords; out.tangent_position = tangent_matrix * world_position.xyz; out.tangent_light_position = tangent_matrix * light.position; out.tangent_view_position = tangent_matrix * camera.position.xyz; out.world_position = world_position.xyz; return out; } // Fragment shader // normal distribution function (Trowbridge-Reitz GGX) fn distribution_ggx(n: vec3, h: vec3, a: f32) -> f32 { let a2 = a * a; let n_dot_h = max(dot(n, h), 0.0); let n_dot_h2 = n_dot_h * n_dot_h; var denom = (n_dot_h2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return a2 / denom; } // geometry function (Smith's Schlick-GGX) fn geometry_schlick_ggx(nom: f32, k: f32) -> f32 { let denom = nom * (1.0 - k) + k; return nom / denom; } fn geometry_smith(n: vec3, v: vec3, l: vec3, k: f32) -> f32 { let n_dot_v = max(dot(n, v), 0.0); let n_dot_l = max(dot(n, l), 0.0); let ggx1 = geometry_schlick_ggx(n_dot_v, k); let ggx2 = geometry_schlick_ggx(n_dot_l, k); return ggx1 * ggx2; } // fresnel function (Fresnel-Schlick approximation) fn fresnel_schlick(cos_theta: f32, f: vec3) -> vec3 { return f + (1.0 - f) * pow(1.0 - cos_theta, 5.0); } @group(0) @binding(0) var t_diffuse: texture_2d; @group(0)@binding(1) var s_diffuse: sampler; @group(0)@binding(2) var t_normal: texture_2d; @group(0) @binding(3) var s_normal: sampler; @group(0)@binding(4) var t_metallic_roughness: texture_2d; @group(0) @binding(5) var s_metallic_roughness: sampler; @fragment fn fs_main(in: VertexOutput) -> @location(0) vec4 { // textures let object_color: vec4 = textureSample(t_diffuse, s_diffuse, in.tex_coords); let object_normal: vec4 = textureSample(t_normal, s_normal, in.tex_coords); let object_metallic_roughness: vec4 = textureSample( t_metallic_roughness, s_metallic_roughness, in.tex_coords); // TODO: AO let albedo = object_color.xyz; // TODO: pass factors to shader let roughness = object_metallic_roughness.y * 1.0; let metallic = object_metallic_roughness.z * 1.0; // lighting vecs let tangent_normal = object_normal.xyz * 2.0 - 1.0; var light_dir = normalize(in.tangent_light_position - in.tangent_position); let view_dir = normalize(in.tangent_view_position - in.tangent_position); let half_dir = normalize(view_dir + light_dir); // attenuation let light_dist = length(light.position - in.world_position); let coef_a = 0.0; let coef_b = 1.0; let light_attenuation = 1.0 / (1.0 + coef_a * light_dist + coef_b * light_dist * light_dist); // radiance let radiance_strength = max(dot(tangent_normal, light_dir), 0.0); let radiance = radiance_strength * light.color.xyz * light.color.w * light_attenuation; // fresnel var f = vec3(0.04); f = mix(f, albedo, metallic); let fresnel = fresnel_schlick(max(dot(half_dir, view_dir), 0.0), f); // distribution let ndf = distribution_ggx(tangent_normal, half_dir, roughness); // geometry let geo = geometry_smith(tangent_normal, view_dir, light_dir, roughness); // brdf let nom = ndf * geo * fresnel; let denom = 4.0 * max(dot(tangent_normal, view_dir), 0.0) * max(dot(tangent_normal, light_dir), 0.0) + 0.0001; let specular = nom / denom; let k_d = (vec3(1.0) - fresnel) * (1.0 - metallic); let n_dot_l = max(dot(tangent_normal, light_dir), 0.0); let total_radiance = (k_d * albedo / PI + specular) * radiance * n_dot_l; // ambient let ambient_light_color = vec3(1.0); let ambient_strength = 0.025; let ambient_color = ambient_light_color * ambient_strength; var result = ambient_color + total_radiance; // tonemap result = result / (result + vec3(1.0)); //result = pow(result, vec3(1.0/2.2)); return vec4(result, object_color.a); }