use std::path::PathBuf; use wgpu::util::DeviceExt; use crate::core::model::{Material, Mesh, Model, ModelVertex}; use crate::core::texture::Texture; pub fn get_resource_path(file_name: &str) -> PathBuf { return std::path::Path::new(env!("OUT_DIR")) .join("res") .join(file_name); } pub async fn load_model_gltf( file_name: &str, device: &wgpu::Device, queue: &wgpu::Queue, layout: &wgpu::BindGroupLayout, ) -> anyhow::Result { let mut materials = Vec::new(); let mut meshes = Vec::new(); println!("gltf: Loading file {}", file_name); let (document, buffers, mut images) = gltf::import(get_resource_path(file_name))?; println!("gltf: Loading meshes"); for mesh in document.meshes() { let primitives = mesh.primitives(); primitives.for_each(|primitive| { let reader = primitive.reader(|buffer| Some(&buffers[buffer.index()])); let mut vertices = Vec::new(); let mut indices = Vec::new(); if let Some(vertex_attribute) = reader.read_positions() { vertex_attribute.for_each(|vertex| { // dbg!(vertex); vertices.push(ModelVertex { position: vertex, ..Default::default() }) }); } else { panic!(); } if let Some(normal_attribute) = reader.read_normals() { let mut normal_index = 0; normal_attribute.for_each(|normal| { // dbg!(normal); vertices[normal_index].normal = normal; normal_index += 1; }); } else { panic!(); } if let Some(tangent_attribute) = reader.read_tangents() { // println!("gltf: loading tangents from file"); let mut tangent_index = 0; tangent_attribute.for_each(|tangent| { // dbg!(tangent); vertices[tangent_index].tangent = [ tangent[0] * tangent[3], tangent[1] * tangent[3], tangent[2] * tangent[3], ]; vertices[tangent_index].bitangent = cgmath::Vector3::from(vertices[tangent_index].normal) .cross(cgmath::Vector3::from(vertices[tangent_index].tangent)) .into(); tangent_index += 1; }); } else { // println!("gltf: no tangents in file, calculating from tris"); // tangents and bitangents from triangles let mut triangles_included = vec![0; vertices.len()]; for chunk in indices.chunks(3) { let v0 = vertices[chunk[0] as usize]; let v1 = vertices[chunk[1] as usize]; let v2 = vertices[chunk[2] as usize]; let pos0: cgmath::Vector3 = v0.position.into(); let pos1: cgmath::Vector3 = v1.position.into(); let pos2: cgmath::Vector3 = v2.position.into(); let uv0: cgmath::Vector2 = v0.tex_coords.into(); let uv1: cgmath::Vector2 = v1.tex_coords.into(); let uv2: cgmath::Vector2 = v2.tex_coords.into(); let delta_pos1 = pos1 - pos0; let delta_pos2 = pos2 - pos0; let delta_uv1 = uv1 - uv0; let delta_uv2 = uv2 - uv0; let r = 1.0 / (delta_uv1.x * delta_uv2.y - delta_uv1.y * delta_uv2.x); let tangent = (delta_pos1 * delta_uv2.y - delta_pos2 * delta_uv1.y) * r; let bitangent = (delta_pos2 * delta_uv1.x - delta_pos1 * delta_uv2.x) * -r; for i in 0..3 { let sz = chunk[i] as usize; vertices[sz].tangent = (tangent + cgmath::Vector3::from(vertices[sz].tangent)).into(); vertices[sz].bitangent = (bitangent + cgmath::Vector3::from(vertices[sz].bitangent)).into(); triangles_included[sz] += 1; } } // Average the tangents/bitangents for (i, n) in triangles_included.into_iter().enumerate() { let denom = 1.0 / n as f32; let mut v = &mut vertices[i]; v.tangent = (cgmath::Vector3::from(v.tangent) * denom).into(); v.bitangent = (cgmath::Vector3::from(v.bitangent) * denom).into(); } } if let Some(tex_coord_attribute) = reader.read_tex_coords(0).map(|v| v.into_f32()) { let mut tex_coord_index = 0; tex_coord_attribute.for_each(|tex_coord| { // dbg!(tex_coord); vertices[tex_coord_index].tex_coords = tex_coord; tex_coord_index += 1; }); } else { panic!(); } if let Some(indices_raw) = reader.read_indices() { // dbg!(indices_raw); indices.append(&mut indices_raw.into_u32().collect::>()); } else { panic!(); } // dbg!(indices); let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some(&format!("{:?} Vertex Buffer", file_name)), contents: bytemuck::cast_slice(&vertices), usage: wgpu::BufferUsages::VERTEX, }); let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some(&format!("{:?} Index Buffer", file_name)), contents: bytemuck::cast_slice(&indices), usage: wgpu::BufferUsages::INDEX, }); meshes.push(Mesh { name: file_name.to_string(), vertex_buffer, index_buffer, num_elements: indices.len() as u32, material: primitive.material().index().unwrap_or(0), }); }); } println!("gltf: Loading materials"); for material in document.materials() { let pbr = material.pbr_metallic_roughness(); // diffuse let diffuse_index = pbr .base_color_texture() .map(|tex| { // println!("gltf: get diffuse tex"); tex.texture().source().index() }) .unwrap_or(0); // TODO default tex let diffuse_data = &mut images[diffuse_index]; if diffuse_data.format == gltf::image::Format::R8G8B8 || diffuse_data.format == gltf::image::Format::R16G16B16 { diffuse_data.pixels = gltf_pixels_to_wgpu(diffuse_data.pixels.clone(), diffuse_data.format); } let diffuse_texture = Texture::from_pixels( device, queue, &diffuse_data.pixels, (diffuse_data.width, diffuse_data.height), gltf_image_format_stride(diffuse_data.format), gltf_image_format_to_wgpu(diffuse_data.format, true), Some(file_name), ) .unwrap(); // normal let normal_index = material .normal_texture() .map(|tex| { // println!("gltf: get normal tex"); tex.texture().source().index() }) .unwrap_or(0); // TODO default tex let normal_data = &mut images[normal_index]; if normal_data.format == gltf::image::Format::R8G8B8 || normal_data.format == gltf::image::Format::R16G16B16 { normal_data.pixels = gltf_pixels_to_wgpu(normal_data.pixels.clone(), normal_data.format); } let normal_texture = Texture::from_pixels( device, queue, &normal_data.pixels, (normal_data.width, normal_data.height), gltf_image_format_stride(normal_data.format), gltf_image_format_to_wgpu(normal_data.format, false), Some(file_name), ) .unwrap(); // roughness-metalness let rm_index = pbr .metallic_roughness_texture() .map(|tex| { // println!("gltf: get roughness metalness tex"); tex.texture().source().index() }) .unwrap_or(0); // TODO default tex let rm_data = &mut images[rm_index]; // dbg!(rm_data.format); if rm_data.format == gltf::image::Format::R8G8B8 || rm_data.format == gltf::image::Format::R16G16B16 { rm_data.pixels = gltf_pixels_to_wgpu(rm_data.pixels.clone(), rm_data.format); } let rm_texture = Texture::from_pixels( device, queue, &rm_data.pixels, (rm_data.width, rm_data.height), gltf_image_format_stride(rm_data.format), gltf_image_format_to_wgpu(rm_data.format, false), Some(file_name), ) .unwrap(); materials.push(Material::new( device, &material.name().unwrap_or("Default Material"), diffuse_texture, normal_texture, rm_texture, pbr.metallic_factor(), pbr.roughness_factor(), layout, )); } println!("gltf: load done!"); Ok(Model { meshes, materials }) } fn gltf_image_format_to_wgpu(format: gltf::image::Format, srgb: bool) -> wgpu::TextureFormat { if srgb { return match format { gltf::image::Format::R8 => panic!(), gltf::image::Format::R8G8 => panic!(), gltf::image::Format::R8G8B8 => wgpu::TextureFormat::Rgba8UnormSrgb, // converted gltf::image::Format::R8G8B8A8 => wgpu::TextureFormat::Rgba8UnormSrgb, gltf::image::Format::B8G8R8 => wgpu::TextureFormat::Bgra8UnormSrgb, gltf::image::Format::B8G8R8A8 => wgpu::TextureFormat::Bgra8UnormSrgb, gltf::image::Format::R16 => panic!(), gltf::image::Format::R16G16 => panic!(), gltf::image::Format::R16G16B16 => panic!(), // converted gltf::image::Format::R16G16B16A16 => panic!(), }; } match format { gltf::image::Format::R8 => wgpu::TextureFormat::R8Unorm, gltf::image::Format::R8G8 => wgpu::TextureFormat::Rg8Unorm, gltf::image::Format::R8G8B8 => wgpu::TextureFormat::Rgba8Unorm, // converted gltf::image::Format::R8G8B8A8 => wgpu::TextureFormat::Rgba8Unorm, gltf::image::Format::B8G8R8 => wgpu::TextureFormat::Bgra8Unorm, gltf::image::Format::B8G8R8A8 => wgpu::TextureFormat::Bgra8Unorm, gltf::image::Format::R16 => wgpu::TextureFormat::R16Unorm, gltf::image::Format::R16G16 => wgpu::TextureFormat::Rg16Unorm, gltf::image::Format::R16G16B16 => wgpu::TextureFormat::Rgba16Unorm, // converted gltf::image::Format::R16G16B16A16 => wgpu::TextureFormat::Rgba16Unorm, } } fn gltf_image_format_stride(format: gltf::image::Format) -> u32 { match format { gltf::image::Format::R8 => 1, gltf::image::Format::R8G8 => 2, gltf::image::Format::R8G8B8 => 4, // converted gltf::image::Format::R8G8B8A8 => 4, gltf::image::Format::B8G8R8 => 3, gltf::image::Format::B8G8R8A8 => 4, gltf::image::Format::R16 => 2, gltf::image::Format::R16G16 => 4, gltf::image::Format::R16G16B16 => 8, // converted gltf::image::Format::R16G16B16A16 => 8, } } // Add alpha if needed fn gltf_pixels_to_wgpu(mut bytes: Vec, format: gltf::image::Format) -> Vec { if format == gltf::image::Format::R8G8B8 { let pixels = bytes.len() / 3; bytes.reserve_exact(pixels); bytes = bytes .chunks_exact(3) .flat_map(|s| [s[0], s[1], s[2], 255]) .collect(); } else if format == gltf::image::Format::R16G16B16 { let pixels = bytes.len() / 6; bytes.reserve_exact(pixels); bytes = bytes .chunks_exact(6) .flat_map(|s| [s[0], s[1], s[2], s[3], s[4], s[5], 255, 255]) .collect(); } return bytes; }