wgpu-renderer/res/shaders/fog.wgsl

151 lines
4.4 KiB
WebGPU Shading Language

#include constants.wgsl
#include globals.wgsl
#include light.wgsl
#include noise.wgsl
struct FogVertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) world_position: vec4<f32>,
@location(1) light_world_position: vec3<f32>,
}
// Vertex shader
@vertex
fn vs_main(
model: VertexInput,
instance: InstanceInput,
) -> FogVertexOutput {
let model_matrix = mat4x4<f32>(
instance.model_matrix_0,
instance.model_matrix_1,
instance.model_matrix_2,
instance.model_matrix_3,
);
let world_position = model_matrix * vec4<f32>(model.position, 1.0);
var out: FogVertexOutput;
out.clip_position = camera.proj * camera.view * world_position;
out.world_position = world_position;
out.light_world_position = light.position;
return out;
}
// Fragment shader
@group(1) @binding(0)
var t_light_depth: texture_depth_2d_array;
@group(1) @binding(1)
var s_light_depth: sampler_comparison;
@group(2) @binding(0)
var t_geometry_depth: texture_depth_2d;
@group(2) @binding(1)
var s_geometry_depth: sampler;
fn fog_noise(pos: vec3<f32>) -> f32 {
var p = pos * FOG_SCALE;
p.x += global_uniforms.time * 0.01;
p.y += global_uniforms.time * 0.2;
p.z += sin(global_uniforms.time * 0.1) * 0.1;
return fbm(p);
}
fn ray_march(origin: vec3<f32>, direction: vec3<f32>, scene_depth: f32) -> f32 {
var density = 0.0;
var depth = 0.0;
for (var i = 0; i < FOG_MAX_STEPS; i++)
{
let noise = fog_noise(origin + direction * depth);
depth += FOG_MAX_DIST / f32(FOG_MAX_STEPS);
let blend = min(depth / FOG_BLEND_DIST, 1.0);
let contribution = FOG_DENSITY / f32(FOG_MAX_STEPS);
density += blend * noise * contribution;
if (density >= 1.0)
{
density = 1.0;
break;
}
if (depth >= scene_depth)
{
break;
}
}
return density;
}
fn depth_to_linear(depth: f32) -> f32 {
// convert to linear [near, far] range
let z_near = camera.planes.x;
let z_far = camera.planes.y;
return z_near * z_far / (z_far + depth * (z_near - z_far));
}
@fragment
fn fs_main(vert: FogVertexOutput) -> @location(0) vec4<f32> {
let direction = normalize(vert.world_position.xyz - camera.position.xyz);
let volume_depth = depth_to_linear(vert.clip_position.z);
let uv = vert.clip_position.xy / camera.planes.zw;
let geometry_depth = depth_to_linear(textureSample(t_geometry_depth, s_geometry_depth, uv));
let max_fog_depth = geometry_depth - volume_depth;
if (max_fog_depth <= 0.0)
{
return vec4<f32>(0.0);
}
let density = ray_march(vert.world_position.xyz, direction, max_fog_depth);
// return vec4<f32>(1.0, 1.0, 1.0, density);
var in_light = 0.0;
if (global_uniforms.use_shadowmaps > 0u) {
for (var i: i32 = 0; i < 6; i++) {
let light_coords = light.matrices[i] * vert.world_position;
let light_dir = normalize(light_coords.xyz);
let bias = 0.01;
// z can never be smaller than this inside 90 degree frustum
if (light_dir.z < INV_SQRT_3 - bias) {
continue;
}
// x and y can never be larger than this inside frustum
if (abs(light_dir.y) > INV_SQRT_2 + bias) {
continue;
}
if (abs(light_dir.x) > INV_SQRT_2 + bias) {
continue;
}
in_light = sample_direct_light(i, light_coords);
// TODO should break even if 0 since we're inside frustum.
// See if causes issues with bias overlap between directions.
if (in_light > 0.0) {
break;
}
}
} else {
in_light = 1.0;
}
var base_color = vec3<f32>(mix(0.8, 0.4, density));
let ambient_strength = 0.02;
let ambient_color = base_color * ambient_strength;
var radiance = vec3<f32>(0.0);
if (in_light > 0.0) {
// attenuation
let light_dist = length(light.position - vert.world_position.xyz);
let coef_a = 2.0;
let coef_b = 4.0;
let light_attenuation = 1.0 / (1.0 + coef_a * light_dist + coef_b * light_dist * light_dist);
radiance = light.color.rgb * light.color.a * light_attenuation * in_light;
}
var result = ambient_color + radiance;
// tonemap
result = result / (result + vec3(1.0));
return vec4(result, density * FOG_ALPHA);
}