halflife-photomode/dlls/nodes.h

378 lines
12 KiB
C++

/***
*
* Copyright (c) 1996-2001, Valve LLC. All rights reserved.
*
* This product contains software technology licensed from Id
* Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc.
* All Rights Reserved.
*
* This source code contains proprietary and confidential information of
* Valve LLC and its suppliers. Access to this code is restricted to
* persons who have executed a written SDK license with Valve. Any access,
* use or distribution of this code by or to any unlicensed person is illegal.
*
****/
//=========================================================
// nodes.h
//=========================================================
#pragma once
class FSFile;
//=========================================================
// DEFINE
//=========================================================
#define MAX_STACK_NODES 100
#define NO_NODE -1
#define MAX_NODE_HULLS 4
#define bits_NODE_LAND (1 << 0) // Land node, so nudge if necessary.
#define bits_NODE_AIR (1 << 1) // Air node, don't nudge.
#define bits_NODE_WATER (1 << 2) // Water node, don't nudge.
#define bits_NODE_GROUP_REALM (bits_NODE_LAND | bits_NODE_AIR | bits_NODE_WATER)
//=========================================================
// Instance of a node.
//=========================================================
class CNode
{
public:
Vector m_vecOrigin; // location of this node in space
Vector m_vecOriginPeek; // location of this node (LAND nodes are NODE_HEIGHT higher).
byte m_Region[3]; // Which of 256 regions do each of the coordinate belong?
int m_afNodeInfo; // bits that tell us more about this location
int m_cNumLinks; // how many links this node has
int m_iFirstLink; // index of this node's first link in the link pool.
// Where to start looking in the compressed routing table (offset into m_pRouteInfo).
// (4 hull sizes -- smallest to largest + fly/swim), and secondly, door capability.
//
int m_pNextBestNode[MAX_NODE_HULLS][2];
// Used in finding the shortest path. m_fClosestSoFar is -1 if not visited.
// Then it is the distance to the source. If another path uses this node
// and has a closer distance, then m_iPreviousNode is also updated.
//
float m_flClosestSoFar; // Used in finding the shortest path.
int m_iPreviousNode;
short m_sHintType; // there is something interesting in the world at this node's position
short m_sHintActivity; // there is something interesting in the world at this node's position
float m_flHintYaw; // monster on this node should face this yaw to face the hint.
};
//=========================================================
// CLink - A link between 2 nodes
//=========================================================
#define bits_LINK_SMALL_HULL (1 << 0) // headcrab box can fit through this connection
#define bits_LINK_HUMAN_HULL (1 << 1) // player box can fit through this connection
#define bits_LINK_LARGE_HULL (1 << 2) // big box can fit through this connection
#define bits_LINK_FLY_HULL (1 << 3) // a flying big box can fit through this connection
#define bits_LINK_DISABLED (1 << 4) // link is not valid when the set
#define NODE_SMALL_HULL 0
#define NODE_HUMAN_HULL 1
#define NODE_LARGE_HULL 2
#define NODE_FLY_HULL 3
class CLink
{
public:
int m_iSrcNode; // the node that 'owns' this link ( keeps us from having to make reverse lookups )
int m_iDestNode; // the node on the other end of the link.
entvars_t* m_pLinkEnt; // the entity that blocks this connection (doors, etc)
// m_szLinkEntModelname is not necessarily NULL terminated (so we can store it in a more alignment-friendly 4 bytes)
char m_szLinkEntModelname[4]; // the unique name of the brush model that blocks the connection (this is kept for save/restore)
int m_afLinkInfo; // information about this link
float m_flWeight; // length of the link line segment
};
typedef struct
{
int m_SortedBy[3];
int m_CheckedEvent;
} DIST_INFO;
typedef struct
{
Vector v;
short n; // Nearest node or -1 if no node found.
} CACHE_ENTRY;
//=========================================================
// CGraph
//=========================================================
#define GRAPH_VERSION (int)16 // !!!increment this whever graph/node/link classes change, to obsolesce older disk files.
class CGraph
{
public:
// the graph has two flags, and should not be accessed unless both flags are true!
qboolean m_fGraphPresent; // is the graph in memory?
qboolean m_fGraphPointersSet; // are the entity pointers for the graph all set?
qboolean m_fRoutingComplete; // are the optimal routes computed, yet?
CNode* m_pNodes; // pointer to the memory block that contains all node info
CLink* m_pLinkPool; // big list of all node connections
char* m_pRouteInfo; // compressed routing information the nodes use.
int m_cNodes; // total number of nodes
int m_cLinks; // total number of links
int m_nRouteInfo; // size of m_pRouteInfo in bytes.
// Tables for making nearest node lookup faster. SortedBy provided nodes in a
// order of a particular coordinate. Instead of doing a binary search, RangeStart
// and RangeEnd let you get to the part of SortedBy that you are interested in.
//
// Once you have a point of interest, the only way you'll find a closer point is
// if at least one of the coordinates is closer than the ones you have now. So we
// search each range. After the search is exhausted, we know we have the closest
// node.
//
#define CACHE_SIZE 128
#define NUM_RANGES 256
DIST_INFO* m_di; // This is m_cNodes long, but the entries don't correspond to CNode entries.
int m_RangeStart[3][NUM_RANGES];
int m_RangeEnd[3][NUM_RANGES];
float m_flShortest;
int m_iNearest;
int m_minX, m_minY, m_minZ, m_maxX, m_maxY, m_maxZ;
int m_minBoxX, m_minBoxY, m_minBoxZ, m_maxBoxX, m_maxBoxY, m_maxBoxZ;
int m_CheckedCounter;
float m_RegionMin[3], m_RegionMax[3]; // The range of nodes.
CACHE_ENTRY m_Cache[CACHE_SIZE];
int m_HashPrimes[16];
short* m_pHashLinks;
int m_nHashLinks;
// kinda sleazy. In order to allow variety in active idles for monster groups in a room with more than one node,
// we keep track of the last node we searched from and store it here. Subsequent searches by other monsters will pick
// up where the last search stopped.
int m_iLastActiveIdleSearch;
// another such system used to track the search for cover nodes, helps greatly with two monsters trying to get to the same node.
int m_iLastCoverSearch;
// functions to create the graph
int LinkVisibleNodes(CLink* pLinkPool, FSFile& file, int* piBadNode);
int RejectInlineLinks(CLink* pLinkPool, FSFile& file);
int FindShortestPath(int* piPath, int iStart, int iDest, int iHull, int afCapMask);
int FindNearestNode(const Vector& vecOrigin, CBaseEntity* pEntity);
int FindNearestNode(const Vector& vecOrigin, int afNodeTypes);
//int FindNearestLink ( const Vector &vecTestPoint, int *piNearestLink, bool *pfAlongLine );
float PathLength(int iStart, int iDest, int iHull, int afCapMask);
int NextNodeInRoute(int iCurrentNode, int iDest, int iHull, int iCap);
enum NODEQUERY
{
NODEGRAPH_DYNAMIC,
NODEGRAPH_STATIC
};
// A static query means we're asking about the possiblity of handling this entity at ANY time
// A dynamic query means we're asking about it RIGHT NOW. So we should query the current state
bool HandleLinkEnt(int iNode, entvars_t* pevLinkEnt, int afCapMask, NODEQUERY queryType);
entvars_t* LinkEntForLink(CLink* pLink, CNode* pNode);
void ShowNodeConnections(int iNode);
void InitGraph();
bool AllocNodes();
bool CheckNODFile(const char* szMapName);
bool FLoadGraph(const char* szMapName);
bool FSaveGraph(const char* szMapName);
bool FSetGraphPointers();
void CheckNode(Vector vecOrigin, int iNode);
void BuildRegionTables();
void ComputeStaticRoutingTables();
void TestRoutingTables();
void HashInsert(int iSrcNode, int iDestNode, int iKey);
void HashSearch(int iSrcNode, int iDestNode, int& iKey);
void HashChoosePrimes(int TableSize);
void BuildLinkLookups();
void SortNodes();
int HullIndex(const CBaseEntity* pEntity); // what hull the monster uses
int NodeType(const CBaseEntity* pEntity); // what node type the monster uses
inline int CapIndex(int afCapMask)
{
if (afCapMask & (bits_CAP_OPEN_DOORS | bits_CAP_AUTO_DOORS | bits_CAP_USE))
return 1;
return 0;
}
inline CNode& Node(int i)
{
#ifdef _DEBUG
if (!m_pNodes || i < 0 || i > m_cNodes)
ALERT(at_error, "Bad Node!\n");
#endif
return m_pNodes[i];
}
inline CLink& Link(int i)
{
#ifdef _DEBUG
if (!m_pLinkPool || i < 0 || i > m_cLinks)
ALERT(at_error, "Bad link!\n");
#endif
return m_pLinkPool[i];
}
inline CLink& NodeLink(int iNode, int iLink)
{
return Link(Node(iNode).m_iFirstLink + iLink);
}
inline CLink& NodeLink(const CNode& node, int iLink)
{
return Link(node.m_iFirstLink + iLink);
}
inline int INodeLink(int iNode, int iLink)
{
return NodeLink(iNode, iLink).m_iDestNode;
}
#if 0
inline CNode &SourceNode( int iNode, int iLink )
{
return Node( NodeLink( iNode, iLink ).m_iSrcNode );
}
inline CNode &DestNode( int iNode, int iLink )
{
return Node( NodeLink( iNode, iLink ).m_iDestNode );
}
inline CNode *PNodeLink ( int iNode, int iLink )
{
return &DestNode( iNode, iLink );
}
#endif
};
//=========================================================
// Nodes start out as ents in the level. The node graph
// is built, then these ents are discarded.
//=========================================================
class CNodeEnt : public CBaseEntity
{
void Spawn() override;
bool KeyValue(KeyValueData* pkvd) override;
int ObjectCaps() override { return CBaseEntity::ObjectCaps() & ~FCAP_ACROSS_TRANSITION; }
short m_sHintType;
short m_sHintActivity;
};
//=========================================================
// CStack - last in, first out.
//=========================================================
class CStack
{
public:
CStack();
void Push(int value);
int Pop();
int Top();
int Empty() { return m_level == 0; }
int Size() { return m_level; }
void CopyToArray(int* piArray);
private:
int m_stack[MAX_STACK_NODES];
int m_level;
};
//=========================================================
// CQueue - first in, first out.
//=========================================================
class CQueue
{
public:
CQueue(); // constructor
inline bool Full() { return (m_cSize == MAX_STACK_NODES); }
inline bool Empty() { return (m_cSize == 0); }
//inline int Tail () { return ( m_queue[ m_tail ] ); }
inline int Size() { return (m_cSize); }
void Insert(int, float);
int Remove(float&);
private:
int m_cSize;
struct tag_QUEUE_NODE
{
int Id;
float Priority;
} m_queue[MAX_STACK_NODES];
int m_head;
int m_tail;
};
//=========================================================
// CQueuePriority - Priority queue (smallest item out first).
//
//=========================================================
class CQueuePriority
{
public:
CQueuePriority(); // constructor
inline bool Full() { return (m_cSize == MAX_STACK_NODES); }
inline bool Empty() { return (m_cSize == 0); }
//inline int Tail ( float & ) { return ( m_queue[ m_tail ].Id ); }
inline int Size() { return (m_cSize); }
void Insert(int, float);
int Remove(float&);
private:
int m_cSize;
struct tag_HEAP_NODE
{
int Id;
float Priority;
} m_heap[MAX_STACK_NODES];
void Heap_SiftDown(int);
void Heap_SiftUp();
};
//=========================================================
// hints - these MUST coincide with the HINTS listed under
// info_node in the FGD file!
//=========================================================
enum
{
HINT_NONE = 0,
HINT_WORLD_DOOR,
HINT_WORLD_WINDOW,
HINT_WORLD_BUTTON,
HINT_WORLD_MACHINERY,
HINT_WORLD_LEDGE,
HINT_WORLD_LIGHT_SOURCE,
HINT_WORLD_HEAT_SOURCE,
HINT_WORLD_BLINKING_LIGHT,
HINT_WORLD_BRIGHT_COLORS,
HINT_WORLD_HUMAN_BLOOD,
HINT_WORLD_ALIEN_BLOOD,
HINT_TACTICAL_EXIT = 100,
HINT_TACTICAL_VANTAGE,
HINT_TACTICAL_AMBUSH,
HINT_STUKA_PERCH = 300,
HINT_STUKA_LANDING,
};
extern CGraph WorldGraph;